Co-Regularized PLSA for Multi-Modal Learning
نویسندگان
چکیده
Many learning problems in real world applications involve rich datasets comprising multiple information modalities. In this work, we study co-regularized PLSA (coPLSA) as an efficient solution to probabilistic topic analysis of multi-modal data. In coPLSA, similarities between topic compositions of a data entity across different data modalities are measured with divergences between discrete probabilities, which are incorporated as a co-regularizer to augment individual PLSA models over each data modality. We derive efficient iterative learning algorithms for coPLSA with symmetric KL, `2 and `1 divergences as co-regularizers, in each case the essential optimization problem affords simple numerical solutions that entail only matrix arithmetic operations and numerical solution of 1D nonlinear equations. We evaluate the performance of the coPLSA algorithms on text/image cross-modal retrieval tasks, on which they show competitive performance with stateof-the-art methods.
منابع مشابه
Co-regularized PLSA for Multi-view Clustering
Multi-view data is common in a wide variety of application domains. Properly exploiting the relations among different views is helpful to alleviate the difficulty of a learning problem of interest. To this end, we propose an extended Probabilistic Latent Semantic Analysis (PLSA) model for multi-view clustering, named Co-regularized PLSA (CoPLSA). CoPLSA integrates individual PLSAs in different ...
متن کاملA Novel Multi-modal Integration and Propagation Model for Cross-Media Information Retrieval
In this paper, we present a novel Probabilistic Latent Semantic Analysis-based (PLSA-based) aspect model and turn cross-media retrieval into two parts of multi-modal integration and correlation propagation. We first use multivariate Gaussian distributions to model continuous quantity in PLSA, avoiding information loss between feature-instance versus real-world matching. Multi-modal correlations...
متن کاملphishGILLNET—phishing detection methodology using probabilistic latent semantic analysis, AdaBoost, and co-training
Identity theft is one of the most profitable crimes committed by felons. In the cyber space, this is commonly achieved using phishing. We propose here robust server side methodology to detect phishing attacks, called phishGILLNET, which incorporates the power of natural language processing and machine learning techniques. phishGILLNET is a multi-layered approach to detect phishing attacks. The ...
متن کاملMulti-modal Face Pose Estimation with Multi-task Manifold Deep Learning
Human face pose estimation aims at estimating the gazing direction or head postures with 2D images. It gives some very important information such as communicative gestures, saliency detection and so on, which attracts plenty of attention recently. However, it is challenging because of complex background, various orientations and face appearance visibility. Therefore, a descriptive representatio...
متن کاملRegularized Tensor Factorization for Multi-Modality Medical Image Classification
This paper presents a general discriminative dimensionality reduction framework for multi-modal image-based classification in medical imaging datasets. The major goal is to use all modalities simultaneously to transform very high dimensional image to a lower dimensional representation in a discriminative way. In addition to being discriminative, the proposed approach has the advantage of being ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016